If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2=152
We move all terms to the left:
8x^2-(152)=0
a = 8; b = 0; c = -152;
Δ = b2-4ac
Δ = 02-4·8·(-152)
Δ = 4864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4864}=\sqrt{256*19}=\sqrt{256}*\sqrt{19}=16\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{19}}{2*8}=\frac{0-16\sqrt{19}}{16} =-\frac{16\sqrt{19}}{16} =-\sqrt{19} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{19}}{2*8}=\frac{0+16\sqrt{19}}{16} =\frac{16\sqrt{19}}{16} =\sqrt{19} $
| -18=m-4 | | w+6/5=5 | | 5+7+3y=24+2y | | 7n-24=2n | | 5+14.285714x=9 | | (x+3)(x+2)=6x | | 12(-8p+1)=-5p | | -10-15x=5(-4+5x) | | 91=(x-5)(1/7) | | 5-3p=8 | | 1100+x=2380 | | (3)/(2)b+6+(1)/(2)b=15+2b | | 0=4x^2+24x-76 | | 3x-5(x-2)=-8+3x-12 | | m=8/2,7/2 | | 3(2-x)=-(4+3x3) | | 8+0.143x=9 | | 1/2(8x-10)=-3/4(8x+20) | | Q-6p=11 | | -2(5/2x-3/2)=12 | | x0,5=1 | | 43=x+39 | | x–4.7=6.9 | | 8(h+3)=4h | | 2x+3=-12+15x | | -6=0.2k | | 7(x+1)-2x=x2-2x-3 | | 7(p+3)+9=10(p-2)-3p | | 4(w-2)=13-w | | -4K+17=-5(6k+7) | | 3(-4x+2)-9=7(x+1) | | p/4-5=-2 |